Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury.

نویسندگان

  • Gerhard K Wolf
  • Camille Gómez-Laberge
  • Jordan S Rettig
  • Sara O Vargas
  • Craig D Smallwood
  • Sanjay P Prabhu
  • Sally H Vitali
  • David Zurakowski
  • John H Arnold
چکیده

OBJECTIVE To utilize real-time electrical impedance tomography to guide lung protective ventilation in an animal model of acute respiratory distress syndrome. DESIGN Prospective animal study. SETTING Animal research center. SUBJECTS Twelve Yorkshire swine (15 kg). INTERVENTIONS Lung injury was induced with saline lavage and augmented using large tidal volumes. The control group (n = 6) was ventilated using ARDSnet guidelines, and the electrical impedance tomography-guided group (n = 6) was ventilated using guidance with real-time electrical impedance tomography lung imaging. Regional electrical impedance tomography-derived compliance was used to maximize the recruitment of dependent lung and minimize overdistension of nondependent lung areas. Tidal volume was 6 mL/kg in both groups. Computed tomography was performed in a subset of animals to define the anatomic correlates of electrical impedance tomography imaging (n = 5). Interleukin-8 was quantified in serum and bronchoalveolar lavage samples. Sections of dependent and nondependent regions of the lung were fixed in formalin for histopathologic analysis. MEASUREMENTS AND MAIN RESULTS Positive end-expiratory pressure levels were higher in the electrical impedance tomography-guided group (14.3 cm H₂O vs. 8.6 cm H₂O; p < 0.0001), whereas plateau pressures did not differ. Global respiratory system compliance was improved in the electrical impedance tomography-guided group (6.9 mL/cm H₂O vs. 4.7 mL/cm H₂O; p = 0.013). Regional electrical impedance tomography-derived compliance of the most dependent lung region was increased in the electrical impedance tomography group (1.78 mL/cm H₂O vs. 0.99 mL/cm H₂O; p = 0.001). Pao₂/FIO₂ ratio was higher and oxygenation index was lower in the electrical impedance tomography-guided group (Pao₂/FIO₂: 388 mm Hg vs. 113 mm Hg, p < 0.0001; oxygentation index, 6.4 vs. 15.7; p = 0.02) (all averages over the 6-hr time course). The presence of hyaline membranes (HM) and airway fibrin (AF) was significantly reduced in the electrical impedance tomography-guided group (HMEIT 42% samples vs. HMCONTROL 67% samples, p < 0.01; AFEIT 75% samples vs. AFCONTROL 100% samples, p < 0.01). Interleukin-8 level (bronchoalveolar lavage) did not differ between the groups. The upper and lower 95% limits of agreement between electrical impedance tomography and computed tomography were ± 16%. CONCLUSIONS Electrical impedance tomography-guided ventilation resulted in improved respiratory mechanics, improved gas exchange, and reduced histologic evidence of ventilator-induced lung injury in an animal model. This is the first prospective use of electrical impedance tomography-derived variables to improve outcomes in the setting of acute lung injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of regional ventilation in acute respiratory distress syndrome by electrical impedance tomography.

Mechanical ventilation in acute respiratory distress syndrome (ARDS) incurs a risk of ventilator-associated lung injury (VALI) from inhomogeneous conditions and different properties of dependent and non-dependent lung regions at risk of atelectasis and overdistension, respectively. Electrical impedance tomography (EIT) offers regional ventilation assessment to optimise treatment with mechanical...

متن کامل

[Electrical impedance tomography in acute lung injury].

Electrical impedance tomography has been described as a new method of monitoring critically ill patients on mechanical ventilation. It has recently gained special interest because of its applicability for monitoring ventilation and pulmonary perfusion. Its bedside and continuous implementation, and the fact that it is a non-ionizing and non-invasive technique, makes it an extremely attractive m...

متن کامل

Electrical impedance tomography: so close to touching the holy grail

Electrical impedance tomography is a new technology giving us lung imaging that may allow lung function to be monitored at the bedside. Several applications have been studied to guide mechanical ventilation at the bedside with electrical impedance tomography. Positive end-expiratory pressure trials guided by electrical impedance tomography are relevant in terms of recruited volume or homogeneit...

متن کامل

Literature List Electrical Impedance Tomography

Breathing moves volumes of electrically insulating air into and out of the lungs, producing conductivity changes which can be seen by electrical impedance tomography. It has thus been apparent, since the early days of EIT research, that imaging of ventilation could become a key clinical application of EIT. In this paper, we review the current state and future prospects for lung EIT, by a synthe...

متن کامل

Electrical impedance tomography and trans-pulmonary pressure measurements in a patient with extreme respiratory drive

Preserving spontaneous breathing during mechanical ventilation prevents muscle atrophy of the diaphragm, but may lead to ventilator induced lung injury (VILI). We present a case in which monitoring of trans-pulmonary pressure and ventilation distribution using Electrical Impedance Tomography (EIT) provided essential information for preventing VILI.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Critical care medicine

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2013